Integral Volumen Ejercicio Resuelto 3

Dado el sólido V≡\begin{cases} x^{2}+y^{2}⩽1 \\ 0⩽y⩽x \sqrt{3} \\ 0⩽z⩽2-x^{2}-y^{2} \end {cases}
a) Calcular el volumen de V.
b) Calcular el área de la porción de la superficie {z=2-x^{2}-y^{2}} que forma parte de la frontera de V.
c) Calcular el flujo del vector {\overrightarrow{F}(x,y,z)=(y,-x,2z)} que sale a través de la porción de la superficie
{z=2-x^{2}-y^{2}} que forma parte de la frontera de V.

 

Integral Volumen Ejercicio Resuelto 3

0
Tus Productos/Reservas

Si continuas utilizando este sitio aceptas el uso de cookies. más información

Los ajustes de cookies de esta web están configurados para «permitir cookies» y así ofrecerte la mejor experiencia de navegación posible. Si sigues utilizando esta web sin cambiar tus ajustes de cookies o haces clic en «Aceptar» estarás dando tu consentimiento a esto.

Cerrar